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involutions on associative algebras. The easlest involutions

alternztive algebras are thesz whose symmetric part, at

G iEET o Wex a ' A e o 2
lzgst, is asseoiative. 42800 s s
L S S Frieds et
-
A e £ gt £ '%EL'F
R G, IS e e (NP TR L

T
.- |,‘.m,.:n- ,...-'u-i
e et

a gca;a; involution if all norms ni{x) = zx* were scalars (in

the sense that n(x) € 91). In this cases the traces t(x) = -
= i o

are alsc =zcalarsbince braces t{x) = n{x + 1) - n(x) - n(l) =

nix,1} can bz obtsinced from norms.

W= say * is a central invelubion 1f all norms and traces 1i
= Bay ntral

in the center.

Converselv, all central involutiers can be made into scalar

involutions:

(Broposition) TI #* is a ecentral involation on a f-algebra A
then #* is a scalar invelution cn A as algsbhra over its *-centexr

Ir =

Proof. Recall that the *-center consiats of the symwetric
elements § = Sym (&,+*)fEC(A] of the center. Since all traces
and narms are central by hypothesis and automatically symmeiric,
4.

they lie in . rurthermnre, * ig D-linecar since [(ux)*® = xFwr

- ®*Fw = px¥. Thus % g an invelution on the {l—algebra A. B

a1l scalsry involytions are auvteomatieally central

we ¢alled an involuticon on a unital ¢-zlgebra

i



In ChapterTII we saw that a scalar involuticon * forces A
to nave the structure of a degraze 2 algebra (with nondeogenaracy
conditions, evon a composition zlgebra) with * as standard

involution.

A mora dgeneral kind ol invelution on an zslternative algsbra
iz a nuclear involuticn, defined as one for which all norms
B

nixnd = mx® and Traces t{x) = x + x*¥ lie in ths npuclous. Cnsoz

more, 1f A is unilal the nuelearity of norms forces nuclearity
. i
of traces ti{x) = rlx,1)], Conversely, under cartain
(]

condltions the norms follow from the traces. Tor example, if

€ ¢ then all norms and even z2ll symmetric elements are kraces |

(5.2)  2x = x4+ x¥ = t(x) if ok =x , 0= gEley)
But =ven in characteristic 2 situations :
I
fﬁﬂ}d&
o gite
2 {(Tracos-Inglyv—-Norma Lemea) 1T all traces t(x) = = 4+ =¥ belong to the nuclsus
nZ the alternstive algebra &, so do all norms nix] = xx*.

- + - o = ] -
fix) = x + x* lie in the center then se do all
normg nlx) = wu® If all trzces are scalars; t{x) € ¢l, and |

37 thaye iz at lezct one invertible trace tiy), then all norms

4 o - I h
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Proci. To show xx* asscciates wilh all v,z in A ‘wa compute

A2 associacor

bxe® oy rsd = {238, vax) + [x2e%vle & [eps™awix

(linszrizead sighk bumping) = +Ix=%,wv, x] ~[x,x,v] + [7*,x,y]lx

(becausse of the basic property [a%*,b,c] = =[a,b,e] if a* + a € N(A))



i Fuilicg. o

- “r Bz have ni(x) = xx¥% = ¥*x sincs x¥ = f{x)-x commutes

with x if t(x) lies in the centar., The linsarization n(x,y)

xy* + yx® = x¥fv + vix of the norm is already a trace tixy*) =

Llx*y)., Thus n{xlv = xx*y = x{t{x¥y)-vix] = t{x*y)n —xytx =

{Liwy®)=uydlin = yx®x = yn(x) by contrality ol Lraces Fricda
- - . Lt A bl St ‘1 LR Wy % T ".'r /.:..f. - =, “a 5
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T .
[f-traces are scalars enmixit(y) = nixly + nix)y* =

(%] + nlxiys = tlyn(x)) is a secalar, so if some tly} € ¢1 is |

yo{x] + nlx}y* - t{yn{x)) is a scalar, = some Tiy! _

; ks
invartibla fhsp all sorms nix) = () 7 tlyn(x)) € flazxe scalars. &3
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(Coroilarvy) 17 all traces t(x) are scalars in ¢l then =

-
]
5]

: : = i y o [EY
soalar involufion on A as algebra cvar its w-center, |3

e ) .
. is =m algebra over a field ¢ with involubion

' -
Il'-'

euch that all traces are scalars, then pither *¥ is & scalar

involution, or alss A is comrubative associative of charooter-

istic 2 and * is the identity inwvolution. i
Frooi. v the above, 21l norms will Lie scalars amd * a

scalar involuticn unlizss no trace i) igiinvertible; since @

{5 a fizlé, the only way this could happen 1s for 211 Lraces

o Do zern: L{xj.f % 4+ x* = 0. Then x* = =-x for all x, 1l = 1#* = =1

implies 2 = 0 znd A has characterisbic 2, But than x* = -x = +x

ie tha identity involution, which forces A to be commutative:

vw. In characteristic 2 we have k. £ ¢ , so

: ¥ 3

the commutatiwve algebra A
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Wz denote the subspace spanned by all norms and traces by

N (1f 1 &€ A we can get by with norms alone). Since each norn

and trace is symmetrin,rﬂ){LEﬁm{ﬁ,ﬁ}. Thea relation (& 2) shows

ey L Prpe i . 2 = - Ly £ L s T b ] 5
R B R .r" w Y owe have '_'.D = EE'T'.'I ',.'"'.,7-:] . il \jr_'.[_‘,_-,‘ﬂd.l.r

R

g aubspacse DD of symmelric elem=nts iz called ample if iL contains
_ : [ T DasnLA
all norvms and traces and has the ¢losures property;xuw M E:DGE A? Eb

L]

or all x &€ A, (if 1 € A we only need reguire closure and 1 € Dy »

L&}

ince then avtomatically 211 norwms n{x) = xlx* and traces
t(x) = ni{x,1) belong &o DOJ. The inclizions
(&, 7) N o € 5yn{a,*)
o e
show that when 1/2 € ¢ the anly ample subspace iz Lhe Space
D= sym{A,+) of all symnzlric slenentz. It is only in charac-
teristie 2 type situations thal we need consider arbitrary

anple subspacss,
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F.8  (imple Subspace Froposition) If A is an alternative algsbra

with muclear involution, then the smallest ample subspace of
J

\'.:.' "'- ""’-"-:"‘i-" /'I
the nucleus is the subspace N o Spanned by all Tormsy and the
largest is the subspacs N[A]rﬁﬂym{ﬂ,*} of all symmetric ele- .
mznts in tha nucleus,

Proall, N 15 already ample bhecauzse un{y)x* - xlyysix® =
(st} (y™=*) = (xy) {xv)* = ni{xy) is a norm and nif{y)a* = wyxd 4 wyEp* =
t{xyx®) iz a trazce by Arlin'sz Theorem (x,v, (A} generate an
asseciative subzlgebra containing x* = E{x)—x,y* = t{y)-v if
t{x), biy) € nN(a)).

To show Lhe set of all symmetric nuclszy elements is ample
we nead only werify N (4alx* T M(2) for the nucleous {clearly
xeBymiA, *)x* (CSym(A,%) ). By an argurnant similar to one ahove,

[(zn)x¥ v, 2] = =[ex*,v,xn] + [xn,x%,v12 + [z2,.%x*,.v]0m) {righi

bumping) = ¢ [xz*,y,xn] - [¥n,x,yvlz + [=z%,x, v]lxn (again usinq'
ad o Ry
[a#:b,2] = -Ta,b,c] by ngcl_hmfu' Ixz* vy, xln = [x,=x,nylz=—
[x,2%,;¥]xn (moving the nuclear element n out of harm's Wy .
hylxillﬁiﬁﬂ}} e f [sem®opan] = [,2%,vlxln = Q (right Tamping).
R A

(fnother proof is based on the relation LEI-+(1<8), [A,N1CW,
o) lxnx*,y,z] = [[x nlx* + nmx*,y,.z] = (20l [x%,v,2] 2%

L A5
N¥x* &N if * jig ngclh ) =[xynl[s,v,2] = 0 by 111@{1f9h]- =3
r
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/ i g Exoroices

[inz* v, 2] = 0 using the derivation properties of

[xnx*,v,2z] = 0 uging the derivation properties of

(=] i3 nueclear szhow [xz*,v,.x] = 0 for all v, Lins-
iue to show if all traces zre nuclesr then [ ¥z
thus norms are nuclear.

¢ similear argument to show [xnx*,y,z] = © asguming

traces ar2 nuclear (noting (R - a%)lz® = [n,z%] - t



